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ABSTRACT 
 
Objective: To evaluate the accuracy of predicting the risk to develop pre-eclampsia (PE) 
according to first-trimester maternal characteristics, medical history and biomarkers using 
artificial intelligence and machine learning methods. The prediction is performed using raw 
values that are not standardized. 

 
Methods: The data were derived from prospective non-intervention screening for PE at 11-
13 weeks’ gestation in two maternity hospitals in the UK. The data were divided into three 
subsets. The first set composed of 35,437 subjects was used to develop the training 
process, the second set of 5,000 subjects was utilized to optimize the machine learning 
hyperparameters and a third set of 20,352 subjects was coded and used for the validation. 
An artificial neural network was used to predict from the demographic characteristics and 
medical history the prior risk that was then combined with biomarker values to determine the 
risk of all cases of PE, and preterm PE with delivery at <37 weeks’ gestation. An additional 
network was trained without the race input. Biomarkers included uterine artery pulsatility 
index (UtA-PI), mean arterial blood pressure (MAP), placental growth factor (PlGF), and 
pregnancy-associated placental protein A (PAPP-A). All markers were entered using raw 
values not converted into standardized multiples of the median (MoMs). The prediction 
accuracy was estimated using the area under the receiver operator characteristic (ROC) 
curve (AUC).  We further computed the detection rate for 10%, 20%, and 40% false positive 
rates (FPR). We used a non-parametric test to compare the expected AUC when we 
randomly scrambled the labels and kept the predictions. For the general prediction, we 
performed 10,000 permutations of the labels. When the AUC was higher than the one 
obtained in all 10,000 permutations, we reported a p value of <0.0001. For the race-specific 
analysis, we performed 1,000 permutations. When the AUC was higher than all 
permutations, we reported a p value of <0.001. 
 
Results: The detection rate of preterm PE, at 10% FPR, was 45% in screening by maternal 
factors and this increased to 73% with addition of biomarkers with AUC above 0.9. The race 
information was important for this prediction; when the race input was removed from the 
predictor, the detection rate decreased to 37-43% in screening by maternal factors and 55-
60% with addition of biomarkers. The accuracy of prediction of all cases of PE was lower 
than that of preterm PE. The AUC was 0.76 in screening by maternal factors and 0.82 with 
addition of biomarkers; the respective detection rates, at 10% FPR, were 35% and 48%. 
 
Conclusion: The performance of screening for PE of a non-linear approach with no need for 
a population-based normalization is similar to that of logistic regression. 
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CONTRIBUTION 
 
What are the novel findings of this work? 
 
Non-linear classifiers can be used in combination with maternal risk factors and non-
normalized first trimester biomarkers to predict preterm pre-eclampsia (PE) with high 
accuracy. The incidence of PE and properties are race dependent and ignoring the race 
information significantly reduces the prediction accuracy in general, and further so for non-
White populations.  
 
What are the clinical implications of this work? 
 
This work opens the way to a transferable PE prediction for women different than the now-
standard approach. This will allow for wider usage of first trimester preterm PE prediction.  
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INTRODUCTION 
 
Pre-eclampsia (PE) is a major cause of maternal and fetal morbidity and mortality.1,2 First-
trimester screening for PE by a combination of maternal characteristics and medical history 
with measurements of mean arterial pressure (MAP), uterine artery pulsatility index (UtA-PI), 
serum placental growth factor (PlGF), and serum pregnancy-associated plasma protein-A 
(PAPP-A) could predict about 75% of preterm PE, with delivery at <37 weeks’ gestation and 
40-45% of term PE, at 10% false positive rate (FPR).3-5 Treatment of the high-risk group with 
aspirin (150 mg/day) from 12 to 36 weeks of gestation reduces the rate of preterm PE by 
about 60%.6 
 
The method of screening for PE developed by the Fetal Medicine Foundation, the competing 
risks approach, assumes that every woman has a personalized distribution of gestational 
age at delivery with PE; whether she experiences preeclampsia or not before a specified 
gestational age depends on competition between delivery before or after the development of 
preeclampsia.5 The distribution of biomarkers is specified conditionally on the gestational 
age at delivery with PE, where the values of UtA-PI, MAP, PlGF and PAPP-A are expressed 
as a multiple of the median (MoM) after adjustment for various maternal factors and 
gestational age that were found to provide a substantive contribution to the log10 transformed 
values7-10. However, MoM-based methods require detailed information on the distributions of 
all measures in a large enough cohort for the prediction, that are often lacking in many 
populations. In addition, when applied to biochemical markers, the conversion to MoM has to 
be adjusted to different batches, manufacturers, and analyzers, which has to be repeatedly 
renewed. Recently, artificial intelligence, machine learning, and deep learning methods have 
attracted strong interest around the world, and these methods have been already tested for 
their use in the diagnosis and prediction of many prenatal complications, such as Down 
Syndrome, various structural anomalies identified by ultrasound or Autism Spectrum 
Disorder.11-14 In such studies, learning from dataset patterns enabled artificial intelligence 
and machine learning methods to identify interactions between variables and outcomes, not 
accessible by linear methods.14,15 
 
The objective of this study was to examine the potential value of neural networks for the 
prediction of PE by a combination of maternal factors and biomarkers obtained at 11-13 
weeks gestation without using MoMs. 
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METHODS  
 
Study population  
 
The data were derived from prospective screening for adverse obstetric outcomes in women 
attending for their routine first-trimester hospital visit in pregnancy at King’s College Hospital 
and Medway Maritime Hospital, UK. These visits, which were held at 11+0 -13+6 weeks’ 
gestation, included first, recording of maternal characteristics and medical history,3 second, 
transabdominal ultrasound for measurement of the left and right UtA-PI by color Doppler and 
calculation of the mean PI,18 third, measurement of MAP by validated automated devices 
and standardized protocol,19 and fourth, measurement of serum concentration of PLGF and 
PAPP-A using a DELFIA Xpress system (PerkinElmer Life and Analytical Sciences, 
Waltham, MA, USA) or Cobas e411 system (Roche Diagnostics, Penzberg, Germany). The 
women gave written informed consent to participate in the study, which was approved by the 
NHS Research Ethics Committee. 
 
The inclusion criteria for this study were singleton pregnancy undergoing first-trimester 
combined screening for aneuploidy and subsequently delivering a phenotypically normal live 
birth or stillbirth at >24 weeks’ gestation. We excluded pregnancies with aneuploidies and 
major fetal abnormalities and those ending in termination, miscarriage or fetal death before 
24 weeks.  
 
Outcome measures were preterm PE, with delivery at <37 weeks’ gestation and term PE 
with delivery at ≥37 weeks. Data on pregnancy outcomes were collected from the hospital 
maternity records or the general medical practitioners of the women. The obstetric records of 
all women with pre-existing or pregnancy-associated hypertension were examined to 
determine if the condition was PE, as defined by the American College of Obstetricians and 
Gynecologists (ACOG).2 According to this definition, diagnosis of PE requires the presence 
of new-onset hypertension (blood pressure ≥ 140 mmHg systolic or ≥ 90 mmHg diastolic) at 
≥ 20 weeks gestation or chronic hypertension and either proteinuria (≥ 300 mg/24 h or 
protein-to-creatinine ratio > 30 mg/mmol or ≥ 2+ on dipstick testing) or evidence of renal 
dysfunction (serum creatinine > 97 μmol/L), hepatic dysfunction (transaminases ≥ 65 IU/L) or 
hematological dysfunction (platelet count < 100 000/μL).  
 
Machine learning 

 
The input data were Z-scored. Categorical parameters were translated to a one-hot 
representation and not normalized. For the prediction we used a feed-forward neural 
network with 2 hidden layers. The activation function, which is commonly used in neural 
networks was a Rectified Linear Unit (Relu); this is defined as y = max (0, x). Dropout was 
applied to the second layer. An Adam optimizer was used17. The loss function was binary-
cross-entropy with logits (weighted). All the machine learning was performed with the 
Pytorch. The following hyperparameters were tuned, by a grid search, implemented via NNI - 
an automatic tool for hyperparameters tuning, which optimizes Machine Learning 
performance (https://github.com/microsoft/nni) to determine the batch size, the learning rate, 
the dropout rate, the sizes (number of neurons) in each hidden layer, the activation function, 
and the weight decay. The tuning was done separately for the prior-and-posterior risks-
based predictions. The tuning was done on an internal validation set, and the results are 
reported on a test set, not available at the time of the tuning. The dataset was split into a first 
subset of training prepared from the data of 35,437 subjects, internal validation of a subset 
of 5,000 subjects, and a test subset of 20,352 subjects.  While the data of the outcome of the 
training sub-set were disclosed, for the validation of the final data subset, the outcome data 
were coded and unknown to the team in Israel that conducted the machine learning analysis. 
The tuning was performed on the Area Under Curve (AUC) made of the sensitivity and the 
specificity on the internal validation.  

https://github.com/microsoft/nni
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Statistical analysis 
 
We used two methods for evaluation. The prediction accuracy was estimated using the ROC 
curve AUC. We further computed the detection rate (the Recall) as a function of total fraction 
defined as positive. Since the total fraction of PE in the population is low, our goal was to 
minimize the fraction of women defined to be positive but maximize the recall. The p values 
reported are the probability that the results are random. We used a non-parametric 
permutation test and compared the expected AUC to the one obtained when we randomly 
scrambled the labels of each sample, but kept its predicted score. For the general prediction, 
we performed 10,000 permutations of the labels. When the AUC was higher than the one 
obtained in all 10,000 permutations, we reported a p-value of <0.0001.  For the race-specific 
analysis, we performed 1,000 permutations. When the AUC was higher than all 
permutations, we reported a p-value of <0.001. 
 
Experimental setup 
 
We performed multiple tests and in all tests we used the same training/validation and test 
division. We did the prediction either using or ignoring the race input. When we ignored the 
race input, the prediction was performed on the entire dataset, but the test was done on 
each race separately.  
 
In all cases, we analyzed the following combinations that were tested independently: (a) PE 
vs.no PE, (b) preterm PE vs. no PE, (c) preterm PE vs. no PE OR term PE, and (d) preterm 
PE vs. term PE. When preterm PE was compared to no PE, the term PE cases were ignored 
in both the training and the test data subsets. 
 
RESULTS 
 
Characteristics of the study population  
 
The study population of 60,789 pregnancies included 1,736 (2.9%) subjects that developed 
PE. The characteristics of the study population are summarized in Table 1. In women who 
developed PE, compared to those who did not, there was a higher body mass index and 
interpregnancy interval, a larger proportion of women of black race, a higher incidence of 
chronic hypertension, diabetes mellitus Type 1, systemic lupus erythematosus or 
antiphospholipid syndrome, family history of PE, and conception through assisted fertility 
method and a lower incidence of smoking. 
 
Performance of screening for pre-eclampsia  
 
The data were separated into training, internal validation, and external test validation sets. 
The training set was the input of an artificial neural network to predict three independent 
tasks (Figure 1 for experiment flowchart): first, PE vs. no PE, second, preterm PE vs. no PE 
(data of term PE were omitted), and third, preterm PE vs. everything else (no PE plus term 
PE). The internal validation set was used for tuning hyper-parameters to maximize the AUC 
of the internal validation. The trained model was then applied to the test sub-set, and we 
report here these results.  
 
The detection rates, at FPR of 10%, 20%, and 40%, on the test sets are described in Table 
2, and the AUC ROC are presented in Figure 2. This prediction was performed separately on 
prior risk data (all the demographic and medical and pregnancy history data) and the 
posterior data with addition of biomarker values. The posterior risk included data of PAPP-A, 
PlGF, MAP and UtA-PI. Consistently, the accuracy increased when the posterior values 
were added. Yet, even without using those, the artificial neural network predicts PE in 
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noteworthy success. Specifically, the AUC for preterm PE increased from 0.8 to 0.915 when 
the posterior information was added and detection rate, at 10% FPR, increased from 45% to 
73%. 
 
The results on the influence of the mother race on test accuracy are shown in Table 3. The 
races of the study population were White, Black, South Asian, East Asian, and Mixed. 
However, the number of positive cases for South Asian, East Asian, and Mixed are too low 
and are thus not reported. Removing the race consistently significantly reduced the accuracy 
of all predictors. For example, the AUC of preterm PE that was based on prior information 
dropped to 0.75 and the detection rate at 10% FPR was reduced to 37%. When comparing 
populations, the accuracy for the white population was higher than the black population, 
consistently on all classifiers. 
 
DISCUSSION  
 
Main findings 

 
In this first trimester screening study the approach and methodology of artificial intelligence 
and machine learning with the assistance of neural network algorithms was used for 
predicting the risk for subsequent development of PE. There were two main findings: first, at 
10% FPR, the prediction of preterm PE was 45% in screening by maternal characteristics 
and medical history and this increased to 73% after addition of biomarkers, and second, 
inclusion of race in the prediction algorithm was important, because when this was not 
included the detection rate, at 10% FPR, of combined screening was reduced to 55-60%.  
 
Comparison with results of previous studies and implications for clinical practice. 
 
First trimester prediction of preterm PE is important because treatment of the high-risk group 
with aspirin (150 mg/day from 12 to 36 weeks’ gestation) reduces the rate of early PE with 
delivery at <32 weeks by about 90% and preterm PE by about 60%.4,6,20  Consequently, 
early prediction and prevention of PE was been adopted in the guidelines of the International 
Society for the Study of Hypertension in Pregnancy1 and the International Federation of 
Gynecology and Obstetrics (FIGO).21 
 
The predictive performance for preterm PE using artificial intelligence and machine learning 
methods was similar to that achieved by the competing risk model. 3-5,22,23 The advantage of 
the machine learning approach is use of  raw biomarker data without the need for conversion 
into MoMs, which would simplify the implementation of screening. Additionally, calculators 
from the machine learning approach can be easily and rapidly introduced through an 
automated way with use of cloud-based or any other on-line tools.  
 
Strengths and limitations 
 
The main strength of the study was the large population derived from prospective screening 
for PE, recording all the important factors in maternal demographic characteristics and 
medical history known to be associated with PE, measurement of MAP and UtA-PI with use 
of standardized protocols and appropriately trained practitioners, and measurement of PlGF 
and PAPP-A within 30 minutes of collection with automated machines that are calibrated on 
a daily basis. 
 
The limitation of the study is that the prediction algorithm has not been tested in other 
populations. For example, our finding of the large influence of race on the accuracy of the 
prediction for PE demonstrates a limitation to our study as the race element introduces a 
bias towards the predominating race in the study population. Consequently, adjustments to 
the algorithm are necessary when testing other populations. 
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Conclusion 
 
A novel automated machine learning approach was found useful and accurate in the first 
trimester prediction of preterm PE. The study demonstrated the importance of taking into 
account race in the prediction of PE. 
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 Table 1. Characteristics of the study population. 
 

Characteristic 
Normal 

(n=59,139) 
Pre-eclampsia 

(n=1,736) p-value 

Maternal age (year) 31.0 (26.6, 34.8) 31.2 (26.7, 35.2) 0.112 

Maternal weight (kg) 67.0 (59.2, 78.0) 74.0 (63.9, 87.2) <0.0001 

Maternal height (cm) 165 (160, 169) 164 (159, 168) <0.0001 

Gestational age (day) 89.0 (86.0, 92.0) 89.0 (86.0, 92.0) 0.019 

Race   <0.0001 

  White 43,963 (74.3%) 993 (57.2%)  

  Black 9,790 (16.6%) 599 (34.5%)  

  South Asian 2,641 (4.5%) 83 (4.8%)  

  East Asian 1,230 (2.1%) 24 (1.4%)  

  Mixed 1,515 (2.6%) 37 (2.1%)  

Medical history    

  Chronic hypertension 630 (1.1%) 215 (12.4%) <0.0001 

  Diabetes mellitus type 1 228 (0.4%) 12 (0.7%) <0.0001 

  Diabetes mellitus type 2 294 (0.5%) 26 (1.5%)  

  SLE/APS 113 (0.2%) 9 (0.5%) 0.006 

Smoking 5,667 (9.6%) 101 (5.8%) <0.0001 

Family history of PE 2,257 (3.8%) 136 (7.8%) <0.0001 

Method of conception   <0.0001 

  Spontaneous 57,258 (96.8%) 1,644 (94.7%)  

  In vitro fertilization 1,408 (2.4%) 72 (4.2%)  

  Use of ovulation drugs 473 (0.8%) 20 (1.2%)  

Parity   <0.0001 

  Nulliparous 27,303 (46.2%) 1,008 (58.1%)  

  Parous, no previous PE 30,179 (51.0%) 494 (28.5%)  

  Parous, previous PE 1,657 (2.8%) 234 (13.5%)  

  Interpregnancy interval (year) 3.0 (2.0, 4.9) 3.85 (2.3, 6.7) <0.0001 

Biomarkers    

Biomarkers    

  Mean arterial pressure (mm Hg) 86.3 (81.1-91.8) 93.8 (87.8-99.8) <0.0001 

  Uterine artery pulsatility index 1.7 (1.3, 2.0) 1.9 (1.5, 2.4) <0.0001 

  Placental growth factor (pg/mL) 35.3 (25.9, 49.6) 28.1 (20.4, 40.7) <0.0001 

  Pregnancy associated plasma protein-A (IU/L) 2.7 (1.7, 4.2) 2.3 (1.4, 3.8) <0.0001 

 
Values given in n (%) or median (interquartile range) 
 
PE = preeclampsia; IQR = interquartile range; SLE = systemic erythematosus lupus; APS = 
antiphospholipid syndrome. 
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Table 2. Performance of screening for pre-eclampsia on the test set.  
 
Values reported are the probability that the results are random, and were calculated by 
10,000 random permutations. Value of <0.0001 means that the reported AUC is higher than 
all random realizations.  
 

 
AUC = area under the operator characteristic curve, FPR = fase positive rate, MAP = Mean 
arterial pressure, PAPP-A = Pregnancy-associated plasma protein-A, PLGF = Placental 
growth factor, UtA-PI = Uterine artery pulsatility index.  
 

Method of screening AUC P value 
Detection rate (%) 

FPR 10% FPR 20% FPR 40% 

All PE vs. no PE (n=60,789)      

  Maternal factors 0.758 <0.0001 35.1 52.4 76.0 

  Maternal factors, PAPP-A, PlGF,  MAP, UtA-PI 0.800 <0.0001 48.1 64.4 82.7 

Preterm PE vs. no PE (n=59,551) a      

  Maternal factors 0.799 <0.0001 41.7 64.2 80.8 

  Maternal factors, PAPP-A, PlGF,  MAP, UtA-PI 0.902 <0.0001 73.5 85.4 94.0 

Preterm PE vs. everything else (n=60,789)      

  Maternal factors 0.791 <0.0001 41.1 60.9 82.1 

  Maternal factors, PAPP-A, PlGF,  MAP, UtA-PI 0.897 <0.0001 68.2 84.8 94.0 
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Table 3. Performance of screening for pre-eclampsia on test set, according to maternal race. 
The analysis were separated to races: White and Black (the other races do not have enough 
data), and in addition, on the whole data together. The P values were calculated here by 
1000 random permutations. 
 

Method of screening Race AUC P value 
Detection rate (%) 

FPR 10% FPR 20% FPR 40% 

All PE vs. no PE (n=60,789)       

Maternal factors 

All 0.742 <0.001 32.8 49.9 74.3 

White 0.739 <0.001 30.5 50.0 73.9 

Black 0.722 <0.001 33.5 45.8 70.0 

Maternal factors, PAPP-A, PlGF,  MAP, UtA-PI 

All 0.799 <0.001 43.7 60.3 81.1 

White 0.733 <0.001 39.9 57.2 77.4 

Black 0.826 <0.001 43.3 62.1 85.7 

Preterm PE vs. no PE (n=59,551)        

Maternal factors 

All 0.755 <0.001 37.1 55.0 77.5 

White 0.773 <0.001 44.4 58.3 77.8 

Black 0.691 <0.001 33.9 43.5 67.7 

Maternal factors, PAPP-A, PlGF,  MAP, UtA-PI 

All 0.885 <0.001 60.9 81.5 93.4 

White 0.868 <0.001 58.3 80.6 90.3 

Black 0.882 <0.001 56.5 75.8 95.2 

Preterm PE vs. everything else (n=60,789)       

Maternal factors 

All 0.753 <0.001 37.7 55.0 75.5 

White 0.769 <0.001 43.1 58.3 79.2 

Black 0.69 <0.001 37.1 40.3 67.7 

Maternal factors, PAPP-A, PlGF,  MAP, UtA-PI 

All 0.880 <0.001 60.3 80.1 93.4 

White 0.865 <0.001 58.3 79.2 90.3 

Black 0.872 <0.001 54.8 72.6 95.2 
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Figure Legends 

 

Figure 1. Flowchart of the learning process. The data are divided to training, validation and 

test. The training dataset is used for the training process of the machine, and the validation 

set is used as external data to check the machine performance. Different combinations of 

hyper-parameters are checked in this process, and the parameters, which optimize the 

performance on the validation set are chosen to the final model. Afterwards, the trained 

model is applied to the test set. 

 

Figure 2. AUC ROC Curve for 3 screenings: (A) PE vs. no PE (B) Preterm PE vs. no PE (C) 

Preterm PE vs. everything else, i.e. no PE or term PE. Performances of posterior data are 

presented by the blue curve, and of prior data by the orange curve. 


